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Abstract
Drawing inspiration from Dirac’s work on functions of non-commuting
observables, we develop an approach to phase-space descriptions of operators
and the Wigner–Weyl correspondence in quantum mechanics, complementary
to standard formulations. This involves a two-step process: introducing
phase-space descriptions based on placing position dependences to the left
of momentum dependences (or the other way around); then carrying out a
natural transformation to eliminate a kernel which appears in the expression
for the trace of the product of two operators. The method works uniformly for
both continuous Cartesian degrees of freedom and for systems with finite-
dimensional state spaces. It is interesting that the kernel encountered is
naturally expressible in terms of geometric phases, and its removal involves
extracting its square root in a suitable manner.

PACS number: 03.65.Vf

1. Introduction

The development of classical phase-space methods to describe quantum systems whose
kinematics is governed by Cartesian variables has its origin in two independent ideas. The
first, due to Weyl [1], is the setting up of a rule that maps each (real) classical dynamical
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variable into a corresponding (Hermitian) operator for the quantum system in a linear manner.
The second, due to Wigner [2], is the definition of a (real) phase-space distribution function
representing each (pure or mixed) quantum state in a complete manner. Later work [3]
clarified that these two rules or definitions are exactly inverses of one another, as a result of
which quantum mechanical expectation values can be written in a classical-looking form as
phase-space integrals.

As a function on the classical phase space, the Wigner distribution is real but not
necessarily pointwise non-negative. Therefore, it cannot be interpreted as a probability
distribution. It does, however, lead to the correct marginal position and momentum probability
distributions given by quantum mechanics.

Inspired by the continuous case, there has been considerable interest in extending the
Wigner distribution method to the case of finite-dimensional quantum systems [4–14]. Among
the early efforts are the works of Hannay and Berry [4], Feynman [5] and Wootters [6]. In
the Hannay–Berry approach, one arrives at the finite-dimensional case by starting from the
continuous case and carrying out a process of quotienting with respect to a commutative
group of discrete phase-space translations. In Feynman’s work the two-dimensional case was
treated using the properties of spin in quantum mechanics. Wootters dealt separately with
the cases where the dimension of the state space is a power of 2, and where it is odd. In
the latter, the odd prime dimension is handled first, and then the general odd dimension by
forming a Cartesian product of the prime cases. The approach of Jagannathan [7] is based
on the Weyl-ordered unitary operators for translations on a phase-space lattice, leading to the
discrete Wigner distribution through the associated characteristic function. The more recent
independent work of Luis and Peřina [13] uses a similar approach, and presents a thorough
analysis of the problem.

In an interesting paper developing the analogies between classical and quantum
mechanics, Dirac [15] discussed the general problem of expressing a quantum dynamical
variable, an operator, as a function of the basic complete and irreducible set of operators of the
quantum system. The latter forms a non-commutative set, leading to the concept of ordering
rules in forming their functions. In this context, Dirac used a description of an operator
by a collection of mixed matrix elements, the rows and columns labelled by two different
orthonormal bases for the Hilbert space of the system.

The purpose of the present paper is to show that one can arrive at the Weyl–Wigner
formalism and results in the continuous case starting from Dirac’s ideas and following an
elementary series of steps. This illuminates the use of phase-space language for quantum
mechanics from an alternative perspective. It is known that if one asks for a phase-space
description of a quantum state obeying a small number of very reasonable conditions, then
the Wigner distribution is the unique answer. In another direction, in important work by
several authors [16] the Weyl–Wigner formalism has been shown to be one of several different
possibilities all based on the use of phase-space methods. In the light of this, an alternative
line of argument leading to the same answer may be of interest. We then go on to show
that the same approach based on Dirac’s method works in the finite-dimensional case as well.
All desirable features including traciality and recovery of the marginals can be incorporated.
The method works uniformly for all dimensions N, as was the case in the Hannay–Berry
and Jagannathan treatments. In the qubit case N = 2, the earlier results of Feynman and of
Wootters are recovered.

Phase-space distributions have also played a significant role in optics, particularly in
unifying radiometry and radiative transfer with the theory of partial coherence. These activities
were triggered by the pioneering work of Walther on radiometry and that of Wolf on radiative
transfer. Walther introduced two definitions for the radiance function. The first definition [17]
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is analogous to the Wigner distribution and, indeed, the reader’s attention was drawn by the
author to this fact. Walther’s second definition [18], which has since been used in hundreds
of radiometry papers may be seen, in retrospect, to be analogous to the Dirac-inspired view
of phase-space distributions to be developed here. Interestingly, this remark applies equally
well to Wolf’s expression for the specific intensity [19], having been inspired by the second
definition of Walther.

The value of developing the alternative Dirac-inspired approach in the known and familiar
cases is that it may suggest modifications to other quantum mechanical situations of a non-
Cartesian type. We have in mind for instance quantum mechanics on Lie groups [20], non-
commutative geometric quantum schemes, q-quantum kinematics, etc. In a series of insightful
papers [21], the close connection between Wigner distributions and mutually unbiased bases
[22] has been brought out. Such bases in turn are known to be related to affine planes in
finite geometries, mutually orthogonal arrays, complex polytopes and finite designs [23].
The approach developed here may provide a new perspective to some of these questions and
interrelations.

A brief summary of the present work is as follows. After a quick review of the Dirac-
inspired phase-space description of operators in quantum mechanics in section 2, in section 3
we show how the trace of the product of two operators can be expressed as a phase-space
integral in terms of their phase-space representatives in such a way that the inherent symmetry
of the trace operation is manifest. We show that this can be done at the expense of introducing a
kernel. We investigate the properties of this kernel in detail and show how by defining a square
root of the kernel in a special way one is naturally led to the definition of Wigner distribution
and associated phase-point operators. In section 4, we set up the kinematics of an N-level
quantum system and examine again the trace of the product of two operators. Expressing
this in a manifestly symmetric phase space form brings in an N2 × N2 matrix kernel whose
properties are studied in section 5. In section 6 we show how, by taking the ‘square root’ of
this matrix kernel in a manner ensuring the recovery of the two marginal distributions and
quite similar to the continuous case, one obtains Wigner distributions for any system with a
finite-dimensional Hilbert space. The residual sign ambiguities in the result are pointed out.
Section 7 treats the N = 2 qubit case as an illustration. Section 8 contains the concluding
remarks including a comparison with the Hannay–Berry approach.

2. Dirac type phase-space descriptions of operators

We consider a one-dimensional quantum system whose basic operators are a Hermitian
Cartesian pair q̂, p̂ obeying the Heisenberg commutation relation

[̂q, p̂] = ih̄. (1)

For corresponding classical phase-space variables as well as particular classical values
or quantum eigenvalues, we use q, q ′, q ′′, . . . , p, p′, p′′, . . . . The continuum-normalized
eigenstates |q〉, |p〉 of q̂ and p̂ obey as usual:

〈q|q ′〉 = δ(q − q ′), 〈p|p′〉 = δ(p − p′), 〈q|p〉 = (2πh̄)−1/2 exp( iqp/h̄). (2)

From the completeness relations∫ +∞

−∞
dq|q〉〈q| =

∫ +∞

−∞
dp|p〉〈p| = I, (3)

we obtain immediately the two operator statements

δ(̂q − q) = |q〉〈q|, δ(p̂ − p) = |p〉〈p|. (4)
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Consider now a quantum-mechanical operator Â. It can certainly be completely described
by its position-space matrix elements 〈q ′|Â|q〉 which constitute in general a non-local kernel.
(In case Â is unitary, 〈q ′|Â|q〉 is the overlap between eigenstates of the ‘old’ position operator
q̂ and a ‘new’ one: q̂ ′ = Âq̂Â−1, and then the kernel of Â would be the exponential of
(i times) the analogue of the classical generating function of a canonical transformation of the
type ‘q − Q’ [24].) The kernel corresponding to Â† is

〈q ′|Â†|q〉 = 〈q|Â|q ′〉∗. (5)

To move towards a description of Â at a classical phase-space level it is natural to consider,
in the spirit of Dirac [24], the mixed matrix element 〈q|Â|p〉 which, regarded as a function of
the phase-space variables q and p, certainly also describes Â completely. For later convenience,
we include a non-vanishing plane wave factor and define the ‘left’ phase-space representative
of Â as the function

Al(q, p) = 〈q|Â|p〉〈p|q〉 = Tr{Â|p〉〈p|q〉〈q|}
= Tr{Âδ(p̂ − p)δ(̂q − q)}
= (2πh̄)−1/2〈q|Â|p〉 exp(−iqp/h̄). (6)

Here 〈p|q〉 is the kernel of the unitary operator corresponding to the Fourier transformation,
which interchanges q̂ and p̂. It is interesting to note that in Dirac’s treatment [24] Al(q, p) is
regarded essentially as the ratio 〈q|Â|p〉/〈q|p〉, which determines the form of Â as a function
of q̂ and p̂ in standard ordered form, i.e. q̂ to the left of p̂.

Even if Â is Hermitian, Al(q, p) is in general complex. However, we do have, as is
particularly obvious from the second line in equation (6), the marginals and trace properties∫

dp Al(q, p) = 〈q|Â|q〉,
∫

dq Al(q, p) = 〈p|Â|p〉,
(7)

Tr{Â} =
∫ ∫

dq dp Al(q, p).

As an alternative to the above, the ‘right’ phase-space representative of Â is given by

Ar(q, p) = 〈p|Â|q〉〈q|p〉 = Tr{Â|q〉〈q|p〉〈p|}
= Tr{Âδ(̂q − q)δ(p̂ − p)}
= (2πh̄)−1/2〈p|Â|q〉 exp(iqp/h̄). (8)

This is related to expressing Â in anti-standard form, p̂ to the left of q̂, and we have again∫
dp Ar(q, p) = 〈q|Â|q〉,

∫
dq Ar(q, p) = 〈p|Â|p〉,

Tr{Â} =
∫ ∫

dq dpAr(q, p).

(9)

Thus, we have two phase-space descriptions of the operator Â on the same footing, with
the roles of coordinate and momentum interchanged to go from one to the other. As noted
above, even in the Hermitian case in general both Al(q, p) and Ar(q, p) are complex. More
generally, under Hermitian conjugation we have

B̂ =: Â† ⇒ Br(q, p) = Al(q, p)∗, (10)

so in the Hermitian case we have

Â† = Â ⇒ Ar(q, p) = Al(q, p)∗. (11)

We can now ask if we can pass in a natural way to a third phase-space description
of Â standing exactly ‘midway’ between Al(q, p) and Ar(q, p), thus treating q̂ and p̂

symmetrically. This is achieved in the next section.
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3. Operator product traces and passage to the Weyl–Wigner description

Consider two generally non-commuting operators Â and B̂. The trace of their product is
symmetric under their interchange and can be expressed in two ways using classical phase
space7:

Tr{ÂB̂} =
∫ ∫

dq dp〈q|Â|p〉〈p|B̂|q〉

= 2πh̄

∫ ∫
dq dp Al(q, p)Br(q, p)

= 2πh̄

∫ ∫
dq dpAr(q, p)Bl(q, p). (12)

The last line follows from the previous one by symmetry under interchange of Â and B̂.
However, in each of these two phase-space integrals the manifest symmetry in Â and B̂ is
lacking. One can ask if such symmetry can be restored while continuing to work with phase-
space quantities. Towards this end, we begin by first expressing (ÂB̂)l(q, p) entirely in terms
of Al(q

′, p′) and Bl(q
′′, p′′):

(ÂB̂)l(q, p) = 〈q|ÂB̂|p〉〈p|q〉 =
∫ ∫

dq ′ dp′〈q|Â|p′〉〈p′|q ′〉〈q ′|B̂|p〉〈p|q〉

=
∫ ∫

dq ′ dp′Al(q, p′)Kl(q, p′; q ′, p)Bl(q
′, p),

Kl(q, p′; q ′, p) = (2πh̄)2〈q|p′〉〈p′|q ′〉〈q ′|p〉〈p|q〉 = exp{i(q − q ′)(p′ − p)/h̄}, (13)

the first line in the definition of Kl following from: 〈q|Â|p′〉 = Al(q, p′)/〈p′|q〉 and from:
1/〈p′|q〉 = 2πh̄〈q|p′〉. The non-local convolution involved in expressing (ÂB̂)l in terms of
Al and Bl is an indication already of the general situation since we are dealing with mixed
matrix elements; it is a forerunner of the Moyal or ‘star’ product when the transition to the
Weyl–Wigner description of operators is completed. We may also note that, aside from the
continuum normalization of the q̂ and p̂ eigenvectors, the kernel Kl is a four-vertex Bargmann
invariant [25]. Hence its phase, which is the area of the phase-space rectangle with vertices
(q, p), (q, p′), (q ′, p) and (q ′, p′), is a geometric phase8. Now combining equation (13) with
equation (7) and relabelling some variables for convenience, we get Tr{ÂB̂} entirely in terms
of left representatives:

Tr{ÂB̂} =
∫ ∫ ∫ ∫

dq dp dq ′ dp′Al(q, p)Kl(q, p; q ′, p′)Bl(q
′, p′). (14)

The kernel Kl (q, p; q ′, p′) is explicitly symmetric under: (q, p) ←→ (q ′, p′), so we have
a classical phase-space expression for Tr{ÂB̂} manifestly symmetric in Â and B̂, but at the
cost of a kernel. In addition to symmetry, this kernel possesses two important properties: it is
invariant under phase-space translations as it depends only on the differences q − q ′, p − p′,
and it satisfies the ‘marginals’ equations∫

dp′Kl(q, p; q ′, p′) = 2πh̄δ(q − q ′),
∫

dq ′Kl(q, p; q ′, p′) = 2πh̄δ(p − p′). (15)

7 Thus, as is well known, from the point of view of trace calculations the standard and anti-standard orderings are
dual to one another.
8 The connection between Bargmann invariants and geometric phases is explored in [26].
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The most natural question is to ask if this kernel can in some sense be ‘transformed away’
while maintaining manifest symmetry in Â and B̂. This can be done if we can express it as
the ‘square’ or the convolution of some more elementary kernel, say in the form

Kl(q, p; q ′, p′) =
∫ ∫

dq ′′ dp′′ ξ(q ′′, p′′; q, p)ξ(q ′′, p′′; q ′, p′). (16)

From the known properties of Kl(q, p; q ′, p′) we can demand that ξ(q, p; q ′, p′) too be a
symmetric function of its (pairs of) arguments, be invariant under phase-space translations and
so depend only on the differences q − q ′, p − p′ and possess the ‘marginals’ property∫

dp′ ξ(q, p; q ′, p′) =
√

2πh̄δ(q − q ′),∫
dq ′ ξ(q, p; q ′, p′) =

√
2πh̄δ(p − p′).

(17)

Easy calculation shows that the expression

ξ(q, p; q ′, p′) =
√

2

πh̄
exp{2i(q − q ′)(p − p′)/h̄} (18)

obeys all the conditions imposed above9. If we use this in equation (14) and associate one
factor of ξ each with Al and Bl we arrive at the simpler expression

Tr{ÂB̂} = 1

2πh̄

∫ ∫
dq dp A(q, p)B(q, p), (19)

where A(q, p) arises from Al(q, p) via

A(q, p) =
√

2πh̄

∫ ∫
dq ′ dp′ ξ(q, p; q ′, p′)Al(q

′, p′) (20)

and similarly for B(q, p).10 We have thus achieved, by a two-step procedure, our objective of
expressing Tr{ÂB̂} as a manifestly symmetric classical phase-space integral, with one phase-
space function each representing Â and B̂ and with no additional kernel. One can now see that
in the case Â† = Â, B̂† = B̂, since Tr{ÂB̂} is real and Â and B̂ can be chosen independently,
A(q, p) and B(q, p) must be individually real:

Â = Â† ⇒ A(q, p) = A(q, p)∗. (21)

Expression (20) for A(q, p) is indeed the Weyl–Wigner representative of Â in phase-space
form. With elementary manipulations we can express it in the familiar forms

A(q, p) = 2
∫ ∫

dq ′ dp′ Al(q
′, p′) exp{2i(q − q ′)(p − p′)/h̄} (22)

=
∫ ∫

dq ′
〈
q − 1

2
q ′

∣∣∣∣ Â ∣∣∣∣q +
1

2
q ′

〉
exp{ipq ′/h̄} (23)

or

A(q, p) = 2πh̄ Tr{ÂŴ(q, p)}, (24)

where

Ŵ(q, p) = 1

2πh̄

∫ ∫
dq ′

∣∣∣∣q +
1

2
q ′

〉 〈
q − 1

2
q ′

∣∣∣∣ exp{ipq ′/h̄}

=
∫ ∫

dq ′
∣∣∣∣q +

1

2
q ′

〉 〈
q +

1

2
q ′|p

〉 〈
p|q − 1

2
q ′

〉 〈
q − 1

2
q ′

∣∣∣∣ . (25)

9 It is interesting that while as a function of four phase-space variables ξ is the pointwise square of Kl , as a kernel it
is the square root of Kl .
10 The factor in equation (19) is chosen so that Â and A(q, p) have the same physical dimension.
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Representing this ‘phase-point operator’ as11

Ŵ(q, p) =
∫

dq ′ dq ′′|q ′〉〈q ′|Ŵ(q, p)|q ′′〉〈q ′′|, (26)

the matrix elements are given by

〈q ′|Ŵ(q, p)|q ′′〉 = 1

πh̄
δ(q ′ + q ′′ − 2q) exp{ip(q ′ − q ′′)/h̄}. (27)

It is evident from the first line in equation (25) that Ŵ(q, p) is Hermitian as well as that

Tr{Ŵ(q, p)} = 1

2πh̄
. (28)

The Weyl correspondence makes use (see below) of the ‘Weyl operators’ exp{i(xp̂ −
kq̂)/h̄} that are labelled by the phase-space points x and k. Then, one can prove that

Ŵ(q, p) =
∫ ∫

dx dk

(2πh̄)2
exp{−i(xp − kq)} exp{i(xp̂ − kq̂)/h̄}, (29)

i.e. that the phase-point operators are the symplectic Fourier transforms of the Weyl operators.
Indeed, a straightforward calculation shows that

〈q ′| exp{i(xp̂ − kq̂)/h̄}|q ′′〉 = δ(x + q ′ − q ′′) exp

{
−ik

q ′ + q ′′

2h̄

}
(30)

and using this result to evaluate the matrix elements of both sides of equation (29) one obtains
back equation (27).

We summarize this procedure as follows: the introduction of phase-space description of
operators is via the Dirac method and is quite elementary; at the next stage we carry out a
simple transformation to remove the kernel present in the trace expression, and this leads to
the Wigner–Weyl result.

The general Weyl association is that contained in equations (20), (24) and (25). For the
density operator ρ̂ we use a different normalization and define the Wigner function by

ρ(q, p) = Tr{̂ρŴ(q, p)} (31)

so that the expectation of Â in ρ̂ is

Tr{̂ρÂ} =
∫ ∫

dq dp ρ(q, p)A(q, p). (32)

For any Â, upon integration the Dirac representatives reproduce the marginals as in
equations (7), and (9). When these are combined with equation (17) for ξ(q, p; q ′, p′)
we at once get ∫

dp A(q, p) = 2πh̄〈q|Â|q〉,
∫

dq A(q, p) = 2πh̄〈p|Â|p〉. (33)

For the density operator ρ̂ we omit the factor 2πh̄, so the marginal probability distributions
are recovered again via a two-step process as∫

dp ρ(q, p) = 〈q |̂ρ|q〉,
∫

dq ρ(q, p) = 〈p|̂ρ|p〉. (34)

11 The operators Ŵ (q, p) have been studied in [27], they have been called the elements of the ‘Wigner basis’ for the
space of operators. In the work of Wootters [6] they have been called ‘phase-point operators’.
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4. Kinematics of an N-level quantum system

We now take up the question of adapting the Dirac procedure to the finite-dimensional case.
We consider a quantum system whose state space is a complex (finite-dimensional) Hilbert
space H(N) of dimension N. We select a particular orthonormal basis for H(N), written as |q〉,
with q = 0, 1, . . . , N − 1, to be called the set of ‘position eigenstates’ of the system. Then:

〈q|q ′〉 = δqq ′ , q, q ′ = 0, 1, . . . , N − 1;
N−1∑
q=0

|q〉〈q| = I. (35)

A general vector |ψ〉 ∈ H(N) is described in this basis by a corresponding wavefunction which
is an N-component complex column vector:

ψ(q) = 〈q|ψ〉,

〈ψ |ψ〉 = ‖ψ‖2 =
N−1∑
q=0

〈ψ |q〉〈q|ψ〉 =
N−1∑
q=0

|ψ(q)|2. (36)

By means of an N-point Fourier series transformation we arrive at a complementary
orthonormal basis of ‘momentum eigenstates’ |p〉 with p = 0, 1, . . . , N − 1. The principal
equations are as follows:

|p〉 = 1√
N

N−1∑
q=0

e2π iqp/N |q〉, 〈p|p′〉 = δpp′ , p, p′ = 0, 1, . . . , N − 1,

(37)
N−1∑
p=0

|p〉〈p| = I, 〈q|p〉 = 1√
N

e2π iqp/N .

Now consider a general operator Â on H(N). Using either the basis {|q〉} or the basis {|p〉}
for H(N), it can be completely described by the corresponding N ×N square complex matrices
〈q ′|Â|q〉 or 〈p′|Â|p〉. Following the method of Dirac, however, we can equally well describe
Â completely by the collection of ‘mixed matrix elements’ 〈q|Â|p〉; we call this an N × N

‘array’ rather than a matrix since operator multiplication is not simply the multiplication of
these arrays thought of as matrices. We also note that with the introduction of such arrays the
step to a ‘phase-space’ description of Â has been taken. More precisely, we define the (left)
phase-space representative of Â by

Al(q, p) = 〈q|Â|p〉〈p|q〉 = Tr{Â|p〉〈p|q〉〈q|} = 1√
N

〈q|Â|p〉 exp{−2π ipq/N}. (38)

(By interchanging the roles of q and p we can equally well define an expression Ar(q, p) =
〈p|Â|q〉〈q|p〉; however, we will work with the quantities Al(q, p).) The following are
immediate consequences of this definition:∑

p

Al(q, p) = 〈q|Â|q〉,
∑

q

Al(q, p) = 〈p|Â|p〉,
∑
q,p

Al(q, p) = Tr{Â}. (39)

We may note at this point that as in the continuous case, even for Hermitian Â, Al(q, p) is in
general complex.

Now take two operators Â and B̂ and the trace of their product. We express this in terms
of their (left) phase-space representatives as follows:

Tr{ÂB̂} = N
∑
q,p

Al(q, p)Br(q, p) =
∑
q,p

∑
q ′,p′

〈q|Â|p〉〈p|q ′〉〈q ′|B̂|p′〉〈p′|q〉

=
∑
q,p

∑
q ′,p′

Al(q, p)Kl(q, p; q ′, p′)Bl(q
′, p′), (40)
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where

Kl(q, p; q ′, p′) = N2〈q|p〉〈p|q ′〉〈q ′|p′〉〈p′|q〉 = exp{2π i(q − q ′)(p − p′)/N}. (41)

Thus, the matrix phase-space kernel Kl analogous to equation (13) has been introduced. We
note in passing that (apart from the N2 factor) it is a four-vertex Bargmann invariant, so its
phase is an instance of the kinematic geometric phase [28].

The study of the detailed properties of Kl will lead us to the solution of setting up a
physically reasonable Wigner distribution, for any value of the dimension N.

5. Properties of the kernel Kl

We can regard Kl(q, p; q ′, p′) as defined in equation (41) as constituting a complex square
matrix of dimension N2, with the first pair of arguments (q, p) being row index and the second
pair (q ′, p′) column index12. We denote by K(N2) a complex linear space of dimension N2,
made up of vectors f with components f (q, p):

f ∈ K(N2) → f (q, p), q, p = 0, 1, 2 . . . , N − 1. (42)

It is to be understood that these vectors are ‘periodic’ in the sense that

f (q + nN, p + n′N) = f (q, p), n, n′ = 0,±1,±2, . . . . (43)

The norm is defined in the natural way by

‖f ‖2 = (f, f ) =
N−1∑

q,p=0,1,...

|f (q, p)|2. (44)

Then Kl acts on such vectors according to

(Klf )(q, p) =
∑
q ′,p′

Kl(q, p; q ′, p′)f (q ′, p′). (45)

The following properties are immediately evident

• symmetry:

Kl(q, p; q ′, p′) = Kl(q
′, p′; q, p); (46)

• essential unitarity:∑
q ′,p′

Kl(q, p; q ′, p′)Kl(q
′′, p′′; q ′, p′)∗ = N2δqq ′′δpp′′ ; (47)

• translation invariance:

Kl(q + q0, p + p0; q ′ + q0, p
′ + p0) = Kl(q, p; q ′, p′),

(48)
q0, p0 = 0, 1, 2, . . . , N − 1.

Here and in the following we interpret translated arguments q + q0, p + p0, . . . as always taken
modulo N, so that they always lie in the range 0, 1, . . . , N − 1. Property (47) means that any
eigenvalue of Kl is of the form N eiϕ for some phase ϕ. In addition to the above, the following
‘marginals’ properties are also evident from definition (41):∑

p′
Kl(q, p; q ′, p′) = Nδqq ′ , independent of p, (49a)

12 We introduce below a more compact efficient notation to express this.
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q ′

Kl(q, p; q ′, p′) = Nδpp′ , independent of q. (49b)

These are particularly important for the Wigner distribution problem, so we explore them in
some detail and relate them to the eigenvalue and eigenvector properties of Kl . From either
one of equations (49a), (49b) we get the (weaker) relations∑

q ′p′
Kl(q, p; q ′, p′) = N, independent of q, p. (50)

Let us introduce a single symbol σ to denote the pair (q, p) by the definition

σ = qN + p + 1. (51)

Thus σ runs from 1 to N2. For summations and Kronecker symbols we have the rules∑
p

q fixed

· · · =
∑

σ=qN+1,qN+2...(q+1)N

. . . ,

∑
q

p fixed

· · · =
∑

σ=p+1,N+p+1,2N+p+1,...,(N−1)N+p+1

. . . , (52)

∑
qp

· · · =
N2∑
σ=1

· · · ,

δσσ ′ = δqq ′δpp′ .

We hereafter use σ or q, p interchangeably as convenient. The kernel Kl(q, p; q ′, p′) can
now be written as Kl(σ ; σ ′), while vectors f ∈ K(N2) have components f (σ). In addition
to the properties (46), (47), (49a), (49b) and (50) we have the trace property following from
(41):

Tr{Kl} =
∑

σ

Kl(σ, σ ) = N2. (53)

With this notation one can now see that the marginals properties (49a), (49b) can be
expressed as follows: for each q ′ = 0, 1, . . . , N − 1 we define a vector Uq ′ in K(N2), forming
altogether a set of N real orthonormal vectors (not a basis!) by

Uq ′(σ ) = 1√
N

δqq ′ , independent of p,

(Uq ′ , Uq) = δq ′ q .

(54)

Then equation (49a) translates exactly into the statement

KlUq = NUq, q = 0, 1, . . . , N − 1. (55)

Similarly, for each p′ = 0, 1, . . . , N − 1 we define a vector Vp′ in K(N2) forming altogether a
set of N real orthonormal vectors (again, not a basis!) by

Vp′(σ ) = 1√
N

δpp′ , independent of q,

(Vp′ , Vp) = δp′p.

(56)

Then equation (49b) translates into

KlVp = NVp, p = 0, 1, . . . , N − 1. (57)

These real eigenvectors Uq and Vp are mutually non-orthogonal:

(Vp,Uq) =
∑
σ ′

Vp(σ ′)Uq(σ
′) = 1

N
. (58)
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This leads to the single linear dependence relation among the 2N (real) vectors Uq, Vp∑
q

Uqs =
∑

p

Vps, (59)

which can also be read off from equations (54) and (56). Therefore, Uqs and Vps together
span a (2N − 1)-dimensional subspace K(2N−1) in K(N2), over which Kl reduces to N times
the identity. We can construct an orthonormal basis of (2N − 1) real vectors for K(2N−1) for
instance by the following recipe:

�0 = 1√
N

∑
q

Uq = 1√
N

∑
p

Vp,

Ũj = 1√
j (j + 1)

(U0 + U1 + · · · + Uj−1 − jUj ), j = 1, 2, . . . , N − 1,

Ṽj = 1√
j (j + 1)

(V0 + V1 + · · · + Vj−1 − jVj ), j = 1, 2, . . . , N − 1,

(Ũj ′ , Ũj ) = (Ṽj ′ , Ṽj ) = δj ′j , (�0, �0) = 1,

(Ũj ′ , �0) = (Ṽj ′ , �0) = (Ũj ′ , Ṽj ) = 0.

(60)

If the orthogonal complement of K(2N−1) in K(N2), of dimension (N − 1)2, is written as
K(N−1)2

, i.e.

K(N2) = K(2N−1) ⊕ K(N−1)2
, (61)

then we can supplement the basis (60) for K(2N−1) by (any) additional real orthonormal vectors
to span K(N−1)2

. The essential unitarity of Kl means that it leaves K(N−1)2
also invariant; the

transition from the original (standard) basis of K(N2) to the present one can be accomplished
by an element of the real orthogonal rotation group SO(N2), thus preserving the symmetry
(46) of Kl . Therefore, the matrix Kl has the following structure in a (real) basis adapted to
the decomposition (61):

Kl →
(

N · I 0
0 A + iB

)
. (62)

The unit matrix is of dimension (2N − 1), while the two real (N − 1)2-dimensional matrices
A and B obey

AT = A, BT = B, AB = BA,

A2 + B2 = N2 · I(N−1)2×(N−1)2 ,

Tr{A} = −N(N − 1), Tr{B} = 0.

(63)

Thus the matrix A+iB can definitely be diagonalized by a real rotation in (N −1)2 dimensions,
i.e., by an element of SO((N − 1)2), and each eigenvalue of A + iB is of the form N eiϕ for
some angle ϕ.

It now turns out that we can carry through this diagonalization process explicitly. The
translation invariance (48) of Kl means that the eigenvectors of Kl can be constructed as ‘plane
waves’ in phase space. We can obtain a complete real orthonormal set of vectors of Kl in
K(N2) by this route, recovering the subset of eigenvectors (60) as part of a complete set.

For each point σ0 = (q0, p0) we define a unit vector χσ0 with components

χσ0(σ ) = 1

N
exp(2π i(q0p + p0q)/N) (64)

(we see that condition (43) is indeed obeyed). Thus, we have exactly N2 vectors χσ0 . Using
the modulo N rule for phase-space arguments we then easily obtain the following:
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Klχσ0 = N e−2π iq0p0/Nχσ0 , (65a)(
χσ ′

0
, χσ0

) = δσ ′
0σ0 . (65b)

Therefore, we have achieved full diagonalization of Kl , with
{
χσ0

}
forming an orthonormal

basis inK(N2). The previously found (real) basis for the subspaceK(2N−1), made up exclusively
of eigenvectors of Kl with eigenvalues N, is essentially the subset of (2N − 1) vectors χq0,0

for q0 = 0, 1, . . . , N − 1 and χ0,p0 for p0 = 1, . . . , N − 1. Indeed, we find

Uq = 1√
N

N−1∑
p0=0

e−2π iqp0/Nχ0,p0 , Vp = 1√
N

N−1∑
q0=0

e−2π iq0p/Nχq0,0. (66)

The remaining (N − 1)2 eigenvectors χσ0 for q0, p0 = 1, 2, . . . , N − 1 span the orthogonal
subspace K(N−1)2

. Here we have in detail the following structure. The two eigenvectors χq0,p0

and χN−q0,N−p0 are degenerate, and their components are related by complex conjugation:

Klχq0,p0 = N e−2π iq0p0/Nχq0,p0 ,

KlχN−q0,N−p0 = N e−2π iq0p0/NχN−q0,N−p0; (67)

χN−q0,N−p0(σ ) = χq0,p0(σ )∗.

Therefore, we have a pattern that depends on the parity of N. For odd N, we have
(N − 1)2/2 distinct degenerate pairs of mutually complex conjugate orthogonal eigenvectors
{χq0,p0 , χN−q0,N−p0} for q0 = 1, 2, . . . , (N − 1)/2 and p0 = 1, 2, . . . , N − 1. For even N we
have one real eigenvector χN/2,N/2 with eigenvalue N(−1)N/2 followed by ((N − 1)2 − 1)/2
distinct degenerate pairs {χq0,p0 , χN−q0,N−p0} where we omit q0 = p0 = N/2. In either case
it is clear that by passing to the real and imaginary parts of χq0,p0 , while leaving χN/2,N/2

unchanged, we get a real orthonormal basis for K(N−1)2
in which the matrix A + iB of

equation (62) is diagonal.
Equipped with these important properties of Kl we turn to equation (40) from where we

can find the route to the Wigner distribution.

6. The kernel ξ and the Wigner distribution

Motivated by the structure (40) for Tr{ÂB̂} for two general operators Â and B̂ on H(N), we
try to express the kernel Kl(q, p; q ′, p′) in the form

Kl(σ, σ ′) =
∑
σ ′′

ξ(σ ′′, σ )ξ(σ ′′, σ ′), (68)

with suitable conditions imposed on ξ . The desirable conditions are, as with Kl itself:
symmetry, essential unitarity, translation invariance and marginal conditions similar to
equations (49b) and (49b) for Kl :

ξ(σ, σ ′) = ξ(σ ′, σ ), (69a)∑
σ ′

ξ(σ, σ ′)ξ(σ ′′, σ ′)∗ = Nδσσ ′′ , (69b)

ξ(q + q0, p + p0; q ′ + q0, p
′ + p0) = ξ(q, p; q ′, p′), (69c)

ξUq =
√

NUq, ξVp =
√

NVp. (69d)
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Here we have expressed the last marginals conditions already in terms of the eigenvectors (not
all independent!) Uq, Vp of Kl lying in K(2N−1). More explicitly they read∑

p′
ξ(q, p; q ′, p′) =

√
Nδqq ′ ,

∑
q ′

ξ(q, p; q ′, p′) =
√

Nδpp′ . (70)

The detailed analysis of the eigenvectors and eigenvalues of Kl in the previous section
immediately leads to solutions for ξ . The translation invariance of (69c) is ensured by
arranging that the ‘plane waves’ eigenvectors χq0,p0 of Kl are eigenvectors of ξ as well. We
take ξ to obey

ξχq0,0 =
√

Nχq0,0, q0 = 0, 1, . . . , N − 1; (71a)

ξχ0,p0 =
√

Nχ0,p0 , p0 = 0, 1, . . . , N − 1; (71b)

ξ
(
χq0,p0 or χN−q0,N−p0

) = ±
√

N e−iπq0p0/N
(
χq0,p0 orχN−q0,N−p0

)
,

q0, p0 = 1, . . . , N − 1. (71c)

In the subspaces K(2N−1) and K(N−1)2
we then have:

ξ = √
N · I on K(2N−1),

ξ = (A + iB)1/2 on K(N−1)2
.

(72)

Equations (71a) and (71b) ensure the validity of the marginals properties equation (69d)
or (70) while equation (69b) is obeyed by construction. It is the symmetry requirement
(69a) that dictates that in the case of degenerate orthonormal pairs of Kl eigenvectors{
χq0,p0 , χN−q0,N−p0

}
we choose the square root of the eigenvalue N e−2π iq0p0/N of Kl in

the same way; this is expressed in equation (71c). Thus we see, for odd N there is a 2(N−1)2/2-
fold freedom in the choice of ξ ; for N even there is a 2((N−1)2+1)/2-fold freedom. In each case,
a particular square root of A + iB is involved in equation (72).

With any such ξ , we can return to equation (40) and write it in a manifestly kernel-
independent manner

Tr{ÂB̂} = N
∑
q,p

A(q, p)B(q, p), (73)

where

A(q, p) = 1√
N

∑
q ′,p′

ξ(q, p; q ′, p′)Al(q
′, p′)

= 1√
N

∑
q ′,p′

ξ(q, p; q ′, p′)〈q ′|Â|p′〉〈p′|q ′〉, (74)

with a similar expression for B(q, p) in terms of B̂. We will show below that for Hermitian
Â, A(q, p) is real. Combining equations (39) and (69d) we have ensured the marginals
properties ∑

p

A(q, p) = 〈q|Â|q〉,
∑

q

A(q, p) = 〈p|Â|p〉. (75)

For the density matrix ρ̂ describing some pure or mixed state of the N-level system, we
then have the real Wigner distribution

W(q, p) = 1√
N

∑
q ′,p′

ξ(q, p; q ′, p′)〈q ′ |̂ρ|p′〉〈p′|q ′〉 (76)
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and by equations (75) the two marginal probability distributions in q and p are immediately
recovered. In particular, we find that for position eigenstates and momentum eigenstates the
freedom in the choice of ξ ( which in any case is limited to its action on K(N−1)2

) does not
matter and we get the anticipated results:

ρ̂ = |q ′〉〈q ′| ⇒ W(q, p) = 1

N
δqq ′ , independent of p,

ρ̂ = |p′〉〈p′| ⇒ W(q, p) = 1

N
δpp′ , independent of q.

(77)

Returning to the Wigner distribution (76) we may rewrite it as

W(q, p) = 1

N
Tr{ρŴ(q, p)} (78)

by introducing elements of Wigner basis or phase-point operators (see footnote 11)

Ŵ (q, p) =
√

N
∑
q ′,p′

ξ(q, p; q ′, p′)〈p′|q ′〉|p′〉〈q ′|. (79)

It is an interesting exercise to verify, by combining definition (41) of Kl and (68) and (69b),
that these are Hermitian:

Ŵ (q, p)† = Ŵ (q, p). (80)

This proves that W(q, p) and, more generally, A(q, p) = Tr{ÂŴ (q, p)} for Hermitian Â,
are both real. In addition one can check, by virtue of equations (68), (69a)–(69d), that they
satisfy

Tr{Ŵ (σ )} = 1, Tr{Ŵ (σ )Ŵ (σ ′)} = Nδσσ ′ . (81)

7. The case of N = 2: the qubit

This case is particularly interesting in that some earlier treatments have had to treat it on its own,
as distinct from N an odd prime or an odd integer. In the standard basis for the two-dimensional
Hilbert space H(2) made up of |q〉 for q = 0, 1, accompanied by its complementary basis |p〉,
the matrix Kl(q, p; q ′, p′) is the following:

Kl =


1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

 . (82)

The rows and columns are labelled in the sequence: (q, p) = (0, 0), (0, 1), (1, 0), (1, 1), and
the matrix elements are read off from equation (41). The three orthonormal eigenvectors of
Kl with eigenvalue 2, spanning the subspace K(3) of the general treatment in section 5, are as
follows:

�0 = 1

2


1
1
1
1

 , Ũ1 = 1

2


1
1

−1
−1

 , Ṽ1 = 1

2


1

−1
1

−1

 . (83)
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We choose the fourth eigenvector of Kl , with eigenvalue necessarily −2 since Tr{Kl} = 4,
to be

W = 1

2


1

−1
−1
1

 . (84)

Then the kernel ξ can be immediately synthesized from

ξ�0 =
√

2�0, ξ Ũ1 =
√

2Ũ1, ξ Ṽ1 =
√

2Ṽ1, ξW = i
√

2W (85)

and in the standard basis turns out to be

ξ = 1

2
√

2


3 + i 1 − i 1 − i −1 + i
1 − i 3 + i −1 + i 1 − i
1 − i −1 + i 3 + i 1 − i
−1 + i 1 − i 1 − i 3 + i

 . (86)

Using the above matrix elements of ξ in (79) we obtain, for the phase-point operators

Ŵ(0, 0) =
(

1 1−i
2

1+i
2 0

)
, Ŵ(0, 1) =

(
0 1+i

2
1−i

2 1

)
,

Ŵ(1, 0) =
(

1 −1+i
2

−1−i
2 0

)
, Ŵ(1, 1) =

(
0 −1−i

2
−1+i

2 1

)
,

(87)

and thereby recover the results of Feynman [5] and Wootters [6] and hence also the connection
between sums of phase-point operators along striations of the qubit phase space [21] and the
mutually unbiased bases for N = 2.

For the density operator ρ̂ = 1
2 (I2 + a · σ), a · a � 1 describing a general state of a qubit

one can easily calculate the corresponding Wigner distribution using (76) or (78). The results
arranged in the form of a matrix read(

1 + a1 + a2 + a3 1 + a1 − a2 − a3

1 − a1 − a2 + a3 1 − a1 + a2 − a3

)
. (88)

Using this result it is instructive to verify the validity of (73) for Â = ρ̂1 = 1
2 (I2 + a · σ),

and B̂ = ρ̂2 = 1
2 (I2 + b · σ). Further, it is easily seen from (88) that the maximum

positive and maximum negative values of the Wigner distribution for a qubit occur when
|a1| = |a2| = |a3| = 1/

√
3.

As a final remark, we note that in calculating the kernel ξ , square root of Kl , we might have
chosen W in equation (85) to be the eigenvector corresponding to the eigenvalue −i

√
2 instead

of +i
√

2. This results in changing +i(−i) with −i(+i) in equations (86) and (87) and thus in
an interchange of the role of Ŵ(0, 0) and Ŵ(0, 1) with Ŵ(1, 0) and Ŵ(1, 1) respectively.
Correspondingly, the coefficient a2 in equation (88) would change sign everywhere. This,
however, can be of no physical consequence as is reflected in the fact that the marginals
obtained by summing over q or p are independent of a2.

8. Concluding remarks

We have shown that by an elementary two-step procedure, which works uniformly for
continuous as well as finite-dimensional quantum systems, we can arrive at the Wigner–
Weyl description of operators in quantum mechanics. The starting point is Dirac’s method of



1420 S Chaturvedi et al

expressing a general quantum dynamical variable as an ordered function of non-commuting
position and momentum in the continuous case, and its analogue in the discrete case, with
(say) position to the left of momentum. This leads to an expression for the trace of the
product of two operators involving a kernel. In both cases, this kernel is found to be intimately
related to the well-known Bargmann invariants and hence to the geometric phases of quantum
mechanics. At the next step we extract a suitable square root of this kernel, essentially unique
in the continuous case and with well characterized sign freedoms in the discrete case, which
then yields the Wigner–Weyl correspondence and the associated phase-point operators.

A comprehensive method of handling the finite-dimensional case, based on the more
familiar continuous case and using a process of ‘descent’ or ‘quotienting’ with respect to a
discrete Abelian group of phase-space translations, has been developed by Hannay and Berry
[4] (hereafter H–B). We compare our approach with theirs in the following terms. In H–B the
starting point is to limit oneself to (ideal, non-normalizable) one-dimensional wavefunctions
such that in both position and momentum descriptions one has a sum of equally spaced ‘spikes’
or delta functions. Consistent with this, one imposes phase-space translational periodicities
under translation by suitable integral multiples of the basic lattice spacings 
q,
p. Thus,
one considers position and momentum space wavefunctions:

ψ(q) = ψ(q + 
q) =
∞∑

n=−∞
Cn e2π inq/
q;

ϕ(p) = 1√
h

∫ ∞

−∞
dq e−ipq/h̄ψ(q) (89)

=
√

h̄

∞∑
n=−∞

Cnδ(p − nh/
q).

By imposing an N-step periodicity on the discrete coefficients

Cn+N = Cn, (90)

and writing the integer n as

n = mN + j, m = 0,±1,±2, . . . , j = 0, 1, . . . , N − 1 (91)

these wavefunctions become (using the Poisson summation formula)

ψ(q) = 
q

N

∞∑
m=−∞

C̃mδ(q − m
q/N),

C̃m = C̃m+N =
N−1∑
j=0

Cj e2π ijm/N ; (92)

ϕ(p) =
√

h̄

∞∑
n=−∞

Cnδ(p − nh/
q).

The delta function spacing and the period are 
q/N,
q for ψ(q) and h/
q = 
p/N,
p,
for ϕ(p) where 
q
p = hN . The passage from the set {Cj } to the set {C̃j } is an N-point
finite Fourier transform, appropriate for a finite N-state quantum system. In this approach
to the discrete case, the continuum definition of the Wigner distribution leads upon use of
equation (92) to the expressions

W(q, p) = 1

h

∫ ∞

−∞
dq ′ψ(q − q ′/2)ψ(q + q ′/2)∗ eipq ′/h̄
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= 1

h

∫ ∞

−∞
dp′ϕ(p − p′/2)ϕ(p + p′/2)∗ e−iqp′/h̄

= 1

h

(

q

N

)2 ∞∑
m,m′=−∞

C̃mC̃∗
m′δ

(
q − m + m′

2
· 
q

N

)
eip(m′−m)
q/Nh̄

=
∞∑

n,n′=−∞
CnC

∗
n′δ

(
p − n + n′

2
· 
p

N

)
eiq(n−n′)
p/Nh̄. (93)

(The periodicities of Cn, C̃m and the Poisson summation formula ensure the consistency of
these expressions.) As one may have expected, this distribution has support or ‘spikes’ also at
midpoints of the original lattice of phase-space points (m
q/N, n
p/N) with accompanying
phases. Thus in the H–B method of arriving at the Wigner distribution for N-state quantum
systems we find that W(q, p) has support at 4N2 discrete phase-space points, though the
values at sets of four points are phase related.

In our (and some other) direct approach to the finite-dimensional case, in contrast, it is
clear from the outset that the domain of definition of Wigner–Weyl representatives is exactly
the ‘classical’ discrete phase-space lattice of just N2 points (q, p) with 0 � q, p � N − 1.
Thus, the midway points seen in equation (93) do not appear. On the other hand our definition,
equation (74), of the Wigner–Weyl descriptor A(q, p) of Â is such that traciality holds, so
A(q, p) does describe Â completely.

We comment next on the sign freedom remaining in our definition of the N-state Wigner
distribution, residing in the freedom of choice of square root of the matrix A + iB in
equation (62). (We emphasize that this freedom is present only in the subspace K(N−1)2

of K(N2), since the orthogonal subspace K(2N−1) is tied to the recovery of the standard q and p
marginal distributions.) It is reasonable to anticipate that this may get resolved by the following
considerations: extension of the requirement of recovery of marginals with respect to general
foliations of the discrete phase space; behaviour of the terms in the Moyal or star product of
two Wigner–Weyl symbols corresponding to non-commutative operator multiplication in an
h̄ expansion. In the H–B approach, the continuum Wigner–Weyl description of an operator
Â is carried along through the quotienting procedure, so the analysis may be expected to be
somewhat easier than in the direct treatment of the discrete case.

Comparison of our uniform treatment with Wootter’s method where N = power of 2 and
N = odd prime power are handled separately, emphasizes that there is considerable flexibility
in setting up the Wigner–Weyl correspondence in the finite-dimensional cases. As has been
shown elsewhere [29], at least in the odd N case, there are as many choices as ways of regarding
an N-element set as a finite group, at the very least.

In conclusion, the Dirac-inspired approach provides a fresh perspective on questions of
quantum tomography in finite state systems, and finite geometries relevant to the quantum
information theory. We hope to return to these questions, and those mentioned earlier,
elsewhere.
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